

| Торіс                   | Key Knowledge                                           | Key Skills                                             | Assessment Opportunities         |
|-------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------|
|                         | What will all students KNOW by the end of the topic?    | What key skills will be learnt/developed by the end of | What are the key pieces of       |
|                         |                                                         | the topic? What will all students be able to DO by the | assessment? How will students be |
|                         |                                                         | end of the topic?                                      | assessed?                        |
| Introduction to         | • Fundamental (base) units for mass, length, time,      | • Use of the prefixes: T, G, M, k, c, m, μ, n, p, f •  | Past ISA Questions               |
| Experimental            | amount of substance, temperature, electric current      | Be able to calculate absolute, fractional and          | Questioning in class             |
| Physics                 | and their associated SI units. • Knowledge and use of   | percentage uncertainties and represent uncertainty     | AFL in class                     |
|                         | the SI prefixes, values and standard form •             | in the final answer for a quantity. • Combine          | PPQ                              |
|                         | Identification of random and systematic errors. • Use   | absolute and percentage uncertainties.                 | Targeted Worksheets              |
|                         | of the terms precision, repeatability, reproducibility, |                                                        |                                  |
|                         | resolution and accuracy                                 |                                                        |                                  |
| <b>Particle Physics</b> | • Simple model of the atom • Charge and mass of the     | Classification of particles                            | Questioning in class             |
|                         | proton, neutron and electron in SI units and relative   | Be able to apply knowledge of prefixes on a small      | AFL in class                     |
|                         | units. • Nuclide notation and isotopes • The strong     | scale                                                  | PPQ                              |
|                         | nuclear force and its role in keeping the nucleus       | Conversion between different units of the same         | Targeted Worksheets inc          |
|                         | stable • Unstable nuclei; alpha and beta decay & the    | quantity, eg J and eV                                  | PhysSheets                       |
|                         | existence of the neutrino • Particles & antiparticle.   |                                                        |                                  |
|                         | Photon model of electromagnetic radiation • Four        |                                                        |                                  |
|                         | fundamental interactions: gravity, electromagnetic,     |                                                        |                                  |
|                         | weak nuclear & strong nuclear. • The concept of         |                                                        |                                  |
|                         | exchange particles to explain forces between            |                                                        |                                  |
|                         | elementary particles. • Simple diagrams to represent    |                                                        |                                  |
|                         | particle reactions • Classification of particles        |                                                        |                                  |
|                         | (hadrons, baryons, antibaryons & mesons (pion,          |                                                        |                                  |
|                         | kaon) • Baryon number & its conservation • Lepton       |                                                        |                                  |
|                         | number & its conservation for muon leptons and for      |                                                        |                                  |
|                         | electron leptons. • Strangeness & conservation of       |                                                        |                                  |
|                         | strangeness in strong interactions. • Appreciation that |                                                        |                                  |
|                         | particle physics relies on the collaborative efforts of |                                                        |                                  |

|           | large teams of scientists and engineers to validate              |                                                     |                         |
|-----------|------------------------------------------------------------------|-----------------------------------------------------|-------------------------|
|           | new knowledge. • Properties of quarks and                        |                                                     |                         |
|           | antiquarks and their combination to form baryons,                |                                                     |                         |
|           | antibaryons and mesons • The decay of the neutron •              |                                                     |                         |
|           | Change of quark character in $\beta$ - and in $\beta$ + decay. • |                                                     |                         |
|           | Application of the conservation laws for charge,                 |                                                     |                         |
|           | baryon number, lepton number and strangeness to                  |                                                     |                         |
|           | particle interactions.                                           |                                                     |                         |
|           | Threshold frequency; photon explanation of                       |                                                     |                         |
|           | threshold frequency. • Work function, stopping                   |                                                     |                         |
|           | potential and the photoelectric equation • Ionisation            |                                                     |                         |
|           | and excitation including fluorescent tube. • Line                |                                                     |                         |
|           | spectra as evidence for transitions between discrete             |                                                     |                         |
|           | energy levels in atoms. $h f = E1 - E2 \cdot Electron$           |                                                     |                         |
|           | diffraction suggests that particles possess wave                 |                                                     |                         |
|           | properties and the photoelectric effect suggests that            |                                                     |                         |
|           | electromagnetic waves have a particulate nature.                 |                                                     |                         |
|           | de Broglie wavelength • How and why the amount of                |                                                     |                         |
|           | diffraction changes when the momentum of the                     |                                                     |                         |
|           | particle is changed • Appreciation of how knowledge              |                                                     |                         |
|           | and understanding of the nature of matter changes                |                                                     |                         |
|           | over time. • Appreciation that such changes need to              |                                                     |                         |
|           | be evaluated through peer review and validated by                |                                                     |                         |
|           | the scientific community.                                        |                                                     |                         |
| Materials | • Calculation of density • Hooke's law, elastic limit,           | Be able to interpret simple stress-strain curves. • | Questioning in class    |
|           | meaning of the spring constant • Tensile strain and              | Apply energy conservation to examples involving     | AFL in class            |
|           | tensile stress. • Elastic strain energy, breaking stress         | elastic strain energy and energy to deform.         | PPQ                     |
|           | & calculation of the energy stored • Description of              | Determine Young's Modulus of a material. During     | Targeted Worksheets inc |
|           | plastic behaviour, fracture and brittle behaviour                | completion of Required Practical 4: • Use of a      | PhysSheets              |
|           | linked to force-extension graphs. • Appreciation of              | micrometer • Use of vernier callipers • Record      |                         |
|           | energy conservation issues in the context of ethical             | measurements to appropriate decimal places for      |                         |
|           | transport design Young modulus                                   |                                                     |                         |

| Curriculum Map: Year 12 Subject: A-level Physics Exam Board | d: AQA |
|-------------------------------------------------------------|--------|
|-------------------------------------------------------------|--------|

| Current<br>Electricity | <ul> <li>Electric current as the rate of flow of charge; potential difference as work done per unit charge; resistance. • Current – p.d. characteristics for an ohmic conductor, semiconductor diode, and filament lamp. • Ohm's law as a special case where I ∝ V under constant physical conditions • Meaning and use of equation for resistivity • Qualitative effect of temperature on the resistance of metal conductors and thermistors. • Applications of thermistors • Superconductivity as a property of certain materials which have zero resistivity at and below a critical temperature which depends on the material. • Applications of superconductors in series &amp; in parallel</li> <li>Energy and power equations for electrical circuits • The relationships between currents, voltages and resistances in series and parallel circuits, including cells in series and identical cells in parallel. • Conservation of charge and conservation of energy in dc circuits</li> <li>The meaning of terminal pd and electromotive force Use of the potential divider to supply constant or variable potential difference from a power supply.</li> </ul> | the resolution of the instrument • Use of repeats to<br>reduce the effect of random errors<br>During completion of Required Practical 5: • Use<br>of a micrometer • Use of vernier callipers • Record<br>measurements to appropriate decimal places for<br>the resolution of the instrument • Use of repeats to<br>reduce the effect of random errors<br>During completion of Required Practical 6: • Use<br>of a ammeters and voltmeters • Drawing linear<br>graphs • Determine a gradient Compare a<br>relationship to the equation for a straight line<br>graph and use gradient and intercept to determine<br>unknown values | Questioning in class<br>AFL in class<br>PPQ<br>Targeted Worksheets inc<br>PhysSheets |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Waves                  | <ul> <li>Oscillation of the particles of the medium;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Use of radians and degrees as a measure of angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Questioning in class                                                                 |
|                        | amplitude, frequency, wavelength, speed, phase,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | During completion of Required Practical 1: •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AFL in class                                                                         |
|                        | phase difference, • Longitudinal and transverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Record measurements to appropriate decimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PPQ                                                                                  |
|                        | waves • All electromagnetic waves travel at the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | places for the resolution of the instrument • How                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Targeted Worksheets inc                                                              |
|                        | speed in a vacuum. • Polarisation as evidence for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to reduce uncertainties in measurements •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PhysSheets                                                                           |

| <b></b>   |                                                          |                                                     | l                       |
|-----------|----------------------------------------------------------|-----------------------------------------------------|-------------------------|
|           | nature of transverse waves. • Applications of            | Drawing linear graphs • Determine a gradient •      |                         |
|           | polarisers • Refractive index of a substance • The       | Compare a relationship to the equation for a        |                         |
|           | refractive index of air is approximately 1. • Snell's    | straight line graph and use gradient and intercept  |                         |
|           | law of refraction • Total internal reflection • Fibre    | to determine unknown values                         |                         |
|           | optics including the function of the cladding, pulse     |                                                     |                         |
|           | broadening and absorption. • The formation of            | During completion of Required Practical 2: •        |                         |
|           | stationary waves on a string, with mic                   | Work in a safe way with lasers • Complete a risk    |                         |
|           | rowaves and with sound wave                              | assessment for working with lasers • How to cite a  |                         |
|           | Path difference & coherence. • Interference and          | reference • Record measurements to appropriate      |                         |
|           | diffraction using a laser as a source of                 | decimal places for the resolution of the instrument |                         |
|           | monochromatic light. • Young's double-slit               | • How to reduce uncertainties in measurements       |                         |
|           | experiment • Production of interference pattern using    | Drawing linear graphs • Determine a gradient        |                         |
|           | white light. • Safety issues associated with using laser |                                                     |                         |
|           | Appreciation of how knowledge and understanding          |                                                     |                         |
|           | of nature of electromagnetic radiation has changed       |                                                     |                         |
|           | over time. Diffraction pattern from a single slit using  |                                                     |                         |
|           | monochromatic and white light. • Effect of variation     |                                                     |                         |
|           | of the width of the central diffraction maximum          |                                                     |                         |
|           | when wavelength and slit width are changed. • Plane      |                                                     |                         |
|           | transmission diffraction grating at normal incidence.    |                                                     |                         |
|           | • Derivation of the diffraction grating equation •       |                                                     |                         |
|           | Applications of diffraction gratings                     |                                                     |                         |
| Mechanics | Examples of scalars and vectors. • Addition of           | Use a scale drawing to determine a missing vector   | Questioning in class    |
|           | vectors by calculation or scale drawing. • Resolution    | • Use of tangents to determine instantaneous        | AFL in class            |
|           | of vectors into two components at right angles to        | speeds and velocities • Use of area under a graph   | PPQ                     |
|           | each other. • Conditions for equilibrium for two or      | During completion of Required Practical 3: •        | Targeted Worksheets inc |
|           | three coplanar forces acting at a point. • The meaning   | Determine the uncertainties in the gradient and     | PhysSheets              |
|           | of equilibrium in the context of an object at rest or    | intercept of a straight-line graph • Interpret non- |                         |
|           | moving with constant velocity• Moment of a force         | zero intercepts in relation to a systematic or zero |                         |
|           | about a point defined as force × perpendicular           | error                                               |                         |
|           | distance from the point to the line of action of the     |                                                     |                         |
|           | force. • Couple as a pair of equal and opposite          |                                                     |                         |

| coplanar forces and moment of couple • Principle of       |  |
|-----------------------------------------------------------|--|
| moments. Calculation of displacement, speed,              |  |
| velocity, acceleration. • Representation by graphical     |  |
| methods of uniform and nonuniform acceleration.           |  |
| Significance of areas of velocity-time and                |  |
| acceleration-time graphs and gradients of                 |  |
| displacement-time and velocity-time graphs for            |  |
| uniform and non-uniform acceleration • Independent        |  |
| effect of motion in horizontal and vertical directions    |  |
| of a uniform gravitational field. • Qualitative           |  |
| treatment of friction. • Qualitative treatment of lift    |  |
| and drag forces. • Air resistance increases with speed    |  |
| & its application to reaching a terminal speed. •         |  |
| Qualitative understanding of the effect of air            |  |
| resistance on the trajectory of a projectile and on the   |  |
| factors that affect the maximum speed of a vehicle        |  |
| Knowledge and application of Newton's three laws          |  |
| of motion in appropriate situations. $\bullet$ F = ma for |  |
| situations where the mass is constant Conservation of     |  |
| linear momentum. • Force as the rate of change of         |  |
| momentum • Impulse as the change in momentum •            |  |
| Significance of the area under a force–time graph. •      |  |
| Application of impact forces and the relationship to      |  |
| contact times • Elastic and inelastic collisions;         |  |
| explosions. • Appreciation of momentum                    |  |
| conservation issues in the context of ethical transport   |  |
| design • Energy transferred and work done by a force      |  |
| • Power as rate of energy transfer • Significance of      |  |
| the area under a force–displacement graph. •              |  |
| Calculations involving efficiency • Principle of          |  |
| conservation of energy. • Quantitative and qualitative    |  |
| application of energy conservation to examples            |  |

## Curriculum Map: Year 12 Subject: A-level Physics Exam Board: AQA

| Further<br>Mechanics | <ul> <li>involving gravitational potential energy, kinetic<br/>energy, and work done against resistive forces</li> <li>Motion in a circular path at constant speed implies<br/>there is an acceleration and requires a centripetal<br/>force. • Magnitude of angular speed • Centripetal<br/>acceleration and centripetal force</li> <li>Analysis of characteristics of simple harmonic<br/>motion (SHM). • Condition for SHM and related<br/>equations • Graphical representations linking the<br/>variations of displacement, velocity and acceleration<br/>with time.</li> </ul> | <ul> <li>Use of radians as a measure of angle</li> <li>Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph.</li> </ul>                                       | Targeted Worksheets inc<br>PhysSheets<br>Questioning in class<br>AFL in class<br>PPQ |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Option               | Students choose which option to study depending on<br>their interests: Astronomy, Medical Physics,<br>Engineering, Turning Points                                                                                                                                                                                                                                                                                                                                                                                                                                                   | As a bridge to becoming independent students<br>after Sixth Form students to follow the<br>Specification of their chosen option. Notes will be<br>provided but students to use their initiative to find<br>other sources of information and tools to study<br>with. |                                                                                      |