

Торіс	Key Knowledge	Key Skills	Assessment Opportunities
	What will all students KNOW by the end of the topic?	What key skills will be learnt/developed by the end of	What are the key pieces of
		the topic? What will all students be able to DO by the	assessment? How will students be
		end of the topic?	assessed?
Further	 Mathematical study of mass-spring systems and simple 	 Appreciation that the v – t graph is derived from the 	Past ISA Questions
Mechanics	pendulum • Variation of kinetic energy, gravitational	gradient of the x – t graph and that the a – t graph is	Questioning in class
	potential energy and total energy with both displacement	derived from the gradient of the v – t graph. From	AFL in class
	and time. • Effects of damping on oscillations.	completing Required Practical 7 • How to reduce	PPQ
	 Qualitative treatment of free and forced vibrations. 	uncertainties • Using a fiducial point to reduce	Targeted Worksheets
	Resonance and the effects of damping on the sharpness	parallax error • How to increase accuracy with small	
	of resonance. • Examples of resonance in mechanical	measurements	
	systems and situations involving stationary waves.		
Gravitational	 Concept of a force field as a region in which a body 	 Interpret g-r and V-r graphs Use of log scales when 	Questioning in class
and Electric	experiences a non-contact force. • Students should	plotting data	AFL in class
Fields	recognise that a force field can be represented as a	 Working with inter-related quantities such as field 	PPQ
	vector, the direction of which must be determined by	strength and potential • Interpretation of area under	Targeted Worksheets inc
	inspection. • Gravity as a universal attractive force acting	graphs and gradient of graphs using unit analysis •	PhysSheets
	between all matter. • Newton's law of universal	Use of infinity as a zero reference point	
	gravitation		
	 Representation of a gravitational field by gravitational 		
	field lines. • Gravitational potential as force per unit mass		
	 Magnitude of g in a radial field Definition of 		
	gravitational potential, including zero value at infinity. •		
	Use of gravitational potential difference. • Work done in		
	moving a mass m within a gravitational field •		
	Equipotential surfaces • Gravitational potential in a radial		
	field • Graphical representations of variations of		
	gravitational field strength and gravitational potential		
	with distance from the centre of mass of a body • Orbital		
	period and speed related to radius of circular orbit •		

	Derivation of Kepler's Law • Energy considerations for an		
	orbiting satellite. • Escape velocity. • Synchronous orbits.		
	• Use of satellites in low orbits and geostationary orbits •		
	Force between point charges in a vacuum: • Permittivity		
	of free space • Appreciation that air can be treated as a		
	vacuum when calculating force between charges & that		
	for a charged sphere, charge may be considered to be at		
	the centre. • Comparison of magnitude of gravitational		
	and electrostatic forces between subatomic particles.		
	Representation of electric fields by electric field lines.		
	Electric field strength. In uniform & radial fields •		
	Trajectory of moving charged particle entering a uniform		
	electric field initially at right angles. • Definition of		
	absolute electric potential, including zero value at infinity		
	 Use of electric potential difference. Work done in 		
	moving charge a charge through a potential difference •		
	Equipotential surfaces & no work done moving charge		
	along an equipotential surface. • Electric potential in a		
	radial field • Graphical representations of variations of		
	electric field strength and electric potential with distance		
	from a point charge; use of these graphs • Relationship of		
	electric field strength and electric potential		
Thermal	 Internal energy is the sum of the randomly distributed 	From completing Required Practical 8 • Safely using	
	kinetic energies and potential energies of the particles in	practical equipment • Identifying hazards • Derivation	
	a body. • The internal energy of a system is increased	of $pV = \frac{1}{3}Nm$ (crms) 2 • Use of this equation	
	when energy is transferred to it by heating or when work		
	is done on it (• Qualitative treatment of the first law of		
	thermodynamics. • During a change of state the potential		
	energies of the particle ensemble are changing but not		
	the kinetic energies. • Calculations involving specific heat		
	capacity and specific latent heat.		
	 Gas laws as experimental relationships between 		
	pressure, volume, temperature and the mass of the gas.		

	 Concept of absolute zero of temperature. • Ideal gas equation • Work done on a gas = p∆V • Avogadro constant, molar gas constant & the Boltzmann constant • Use of molar mass and molecular mass. • Brownian motion as evidence for existence of atoms. • Explanation of relationships between pressure, volume & temperature in terms of a simple molecular model. • The gas laws are empirical in nature whereas the kinetic theory model arises from theory. • Assumptions leading to pV = ⅓Nm (crms) 2 • For an ideal gas internal energy is kinetic energy of the atoms. • Use of the equation for average molecular kinetic energy • Appreciation of how knowledge and understanding of the behaviour of a gas has changed over time. 		
Nuclear	 Qualitative study of Rutherford scattering. Appreciation of how knowledge and understanding of the structure of the nucleus has changed over time Properties and experimental identification of alpha, beta and gamma radiation using simple absorption experiments and the relative hazards of exposure to humans. Applications of alpha, beta and gamma radiation including thickness measurements of aluminium foil paper and steel. Inverse-square law for gamma radiation and its application to safe handling of radioactive sources. Background radiation; examples of its origins and experimental elimination from calculations. Appreciation of balance between risk and benefits in the uses of radiation in medicine Random nature of radioactive decay; constant decay probability of a given nucleus; Use of activity 	 From completing Required Practical 12 • Work in a safe way with radioactive materials • Complete a risk assessment for working with radioactive materials • How to cite a reference • Use of background count rate • Reducing uncertainty in measurement of radioactive decay by counting over a longer time period • Compare a relationship to the equation for a straight line graph and use to demonstrate a mathematical relationship (in this case the inverse square law) • Use of molar mass or the Avogadro constant. • Use of log graphs • Use of nuclear energy level diagrams. • Conversion of units; 1 u = 931.5 MeV. • Converting degrees to acr seconds • Converting degrees to radians and vice versa 	Questioning in class AFL in class PPQ Targeted Worksheets inc PhysSheets

• Half-life including determining of half-life from graphical decay data including decay curves and log graphs. • Application of half life e.g. relevance to storage of radioactive waste, radioactive dating etc. • Graph of neutron number (N) against atomic number (Z) for stable nuclei. • Possible decay modes of unstable nuclei including α , β +, β - and electron capture. • Changes in N and Z caused by radioactive decay and representation in simple decay equations. • Existence of nuclear excited states; y ray emission and its application e.g. use of technetium-99m in medical diagnosis. • Estimate of radius from closest approach of alpha particles and determination of radius from electron diffraction. • Knowledge of typical values for nuclear radius. • Dependence of radius on nucleon number • R = R0A1/3 derived from experimental data and its interpretation evidence for constant density of nuclear material. • Calculation of nuclear density. • Graph of intensity against angle for electron diffraction by a nucleus. • Appreciation that E = mc2 applies to all energy changes • Simple calculations involving mass difference and binding energy. • Use of the atomic mass unit, u. • Fission and fusion processes. • Simple calculations from nuclear masses of energy released in fission and fusion reactions. • Graph of average binding energy per nucleon against nucleon number & interpretation of regions where nuclei will release energy when undergoing fission/fusion. • Appreciation that knowledge of the physics of nuclear energy allows society to use science to inform decision making. • Fission induced by thermal neutrons and the; possibility of a chain reaction; critical mass. • The functions of the moderator, control rods, and coolant in a thermal nuclear reactor. • Simple mechanical

Curriculum Map: Year 12 Subject: A-level Physics Exam Board: AQA

	model of moderation by elastic collisions. • Factors affecting the choice of materials for the moderator, control rods and coolant. Examples of materials used for these functions. • Fuel used, remote handling of fuel, shielding and emergency shut-down. • Production, remote handling and storage of radioactive waste materials. • Appreciation of balance between risk and benefits in the development of nuclear power		
Capacitors	 Definition of capacitance: Dielectric action in a capacitor including the action of a simple polar molecule that rotates in the presence of an electric field. Relative permittivity and dielectric constant. Graphical representation of charging and discharging of capacitors through resistors. Corresponding graphs for Q, V and I against time for charging and discharging. Time constant RC. Calculation of time constants including their determination from graphical data. Half life of a capacitor Quantitative treatment of capacitor charging and discharging for charge, potential difference and current 	From completing Required Practical 9 • Work in a safe way with capacitors • Complete a risk assessment for working with capacitors • How to cite a reference • Use of a log-linear graph to demonstrate a mathematical relationship (in this case exponential decay) • Use of log-linear graph and of linear decay curve to determine time constant • Use of data logging equipment as a time-saving method to determine time constant • Interpretation of gradients and areas under graphs where appropriate.	Questioning in class AFL in class PPQ Targeted Worksheets inc PhysSheets
Magnetic Fields	 Force on a current-carrying wire in a magnetic field when field is perpendicular to current. Fleming's left hand rule. Magnetic flux density and definition of the tesla. Force on charged particles moving in a magnetic field when the field is perpendicular to velocity. Direction of force on positive and negative charged particles causing a circular path; application in devices such as the cyclotron. Magnetic flux and magnetic flux linkage Flux and flux linkage passing through a rectangular coil rotated in a magnetic field 	From completing Required Practical 10 • Use of set square to reducing uncertainty in measurement of length or wire and to ensure magnetic field is perpendicular to the current. • Plotting a straight line graph and sing the gradient to determine a value for the magnetic field strength From completing Required Practical 11 • How to control difficult to control variables (such as the position of the search coil in the magnetic	Questioning in class AFL in class PPQ Targeted Worksheets inc PhysSheets

Curriculum Map: Year 12 Subject: A-level Physics Exam Board: AQA

	Magnetic induction in simple experimental phenomena.	
	 Faraday's and Lenz's laws. Magnitude of induced emf 	
	= rate of change of flux linkage • Applications such as a	
	straight conductor moving in a magnetic field.	
	 Equation for the emf induced in a coil rotating 	
	uniformly in a magnetic field • Sinusoidal voltages and	
	currents; root mean square, peak and peak-to-peak	
	values and application to mains electricity • Use of an	
	oscilloscope as a dc and ac voltmeter, to measure time	
	intervals and frequencies, and to display ac waveforms.	
	The transformer equation: Ns Np = Vs Vp • Transformer	
	efficiency • Production of eddy currents. • Causes of	
	inefficiencies in a transformer. • Transmission of	
	electrical power at high voltage including calculations of	
	power loss in transmission lines.	
Further		Targeted Worksheets inc
Mechanics		PhysSheets
		Questioning in class
		AFL in class
		PPQ
Option		